Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High‐Selectivity Electrochemical Reduction of CO2 to CH3OH

2019 
: Electrocatalysis has emerged as an attractive way for artificial CO2 fixation to CH3 OH, but the design and development of metal-free electrocatalyst for highly selective CH3 OH formation still remains a key challenge. Here, it is demonstrated that boron phosphide nanoparticles perform highly efficiently as a nonmetal electrocatalyst toward electrochemical reduction of CO2 to CH3 OH with high selectivity. In 0.1 m KHCO3 , this catalyst achieves a high Faradaic efficiency of 92.0% for CH3 OH at -0.5 V versus reversible hydrogen electrode. Density functional theory calculations reveal that B and P synergistically promote the binding and activation of CO2 , and the rate-determining step for the CO2 reduction reaction is dominated by *CO + *OH to *CO + *H2 O process with free energy change of 1.36 eV. In addition, CO and CH2 O products are difficultly generated on BP (111) surface, which is responsible for the high activity and selectivity of the CO2 -to-CH3 OH conversion process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    72
    Citations
    NaN
    KQI
    []