Quantitative comparison of principal component analysis and unsupervised deep learning using variational autoencoders for shape analysis of motile cells

2020 
Cell motility is a crucial biological function for many cell types, including the immune cells in our body that act as first responders to foreign agents. In this work we consider the amoeboid motility of human neutrophils, which show complex and continuous morphological changes during locomotion. We imaged live neutrophils migrating on a 2D plane and extracted unbiased shape representations using cell contours and binary masks. We were able to decompose these complex shapes into low-dimensional encodings with both principal component analysis (PCA) and an unsupervised deep learning technique using variational autoencoders (VAE), enhanced with generative adversarial networks (GANs). We found that the neural network architecture, the VAE-GAN, was able to encode complex cell shapes into a low-dimensional latent space that encodes the same shape variation information as PCA, but much more efficiently. Contrary to the conventional viewpoint that the latent space is a "black box", we demonstrated that the information learned and encoded within the latent space is consistent with PCA and is reproducible across independent training runs. Furthermore, by including cell speed into the training of the VAE-GAN, we were able to incorporate cell shape and speed into the same latent space. Our work provides a quantitative framework that connects biological form, through cell shape, to a biological function, cell movement. We believe that our quantitative approach to calculating a compact representation of cell shape using the VAE-GAN provides an important avenue that will support further mechanistic dissection of cell motility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    5
    Citations
    NaN
    KQI
    []