Fabrication of WO3–reduced graphene oxide (WO3–G) nanocomposite for enhanced optical and electrical properties

2020 
We report an easy and efficient route for the preparation of WO3–G nanocomposites via a one-pot microwave-assisted method. The changes induced by the addition of graphene oxide (GO) on surface morphology, microstructure, thermal, optical, and electrical properties of the composite were investigated. The crystallographic structure and phase composition were confirmed by X-ray diffraction analysis. Fourier transform-infrared spectroscopy results indicate the presence of WO3 and reduced graphene oxide (rGO) in composites and field emission scanning electron microscopy results confirm the growth of WO3 nanoparticles on reduced graphene oxide sheets. Raman measurements show a decrease of carbon–oxygen functional groups and an increase in graphitic carbon content leading to the reduction of graphene oxide in the composites. UV–Vis diffuse reflectance spectroscopy and Photoluminescence spectroscopy were used to study the optical properties. Thermogravimetric analysis results revealed the higher thermal stability of WO3–G nanocomposites. The frequency-dependent dielectric properties of WO3 nanoparticles and WO3–G nanocomposites at various temperatures were investigated and compared. WO3–G nanocomposites exhibited high dielectric constant and low dielectric loss with a decrease in frequency and an increase in the temperature. The Cole–Cole analysis confirmed that WO3–G nanocomposites have better conductivity and show non-Debye-type relaxation in the applied frequency range. The results showed that WO3–G nanocomposites possess improved optical and electrical properties, which would be promising for practical applications in future nanotechnology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    4
    Citations
    NaN
    KQI
    []