Effect of the electronic kinetics on graphitization of diamond irradiated with swift heavy ions and fs-laser pulses

2018 
Abstract Diamond preliminary damaged with neutrons was irradiated with swift heavy ions (SHI, 1030 MeV 209 Bi) decelerated in the electronic stopping regime as well as with fs-laser pulses. The initial excess electronic energy densities appearing in the nanometric vicinity of the SHI trajectories and within the absorbing layers in laser spots were comparable (∼10 24  eV cm −3 ). Graphitization of diamond in the central parts of the lased spots was observed above the threshold fluence of 15–30 J/cm −2 . It was also found that the lower threshold fluence is required for initiating graphitization as well as destruction of the pre-damaged crystal by laser pulses in comparison to that for undamaged diamond. This indicates a noticeable effect of an existing defect ensemble on the kinetics of diamond transformations in laser spots. However, X-ray diffraction, atomic-force microscopy, and electron microscopy detected no graphitic domains within the SHI-irradiated pre-damaged crystal. The research demonstrated that the density of the initial excess electronic energy cannot be treated as the sole parameter governing subsequent structure transformations in diamond. Large differences between the spatial as well as temporal scales finally results in different pathways of the relaxation kinetics of this excess energy in laser spots and SHI tracks in diamond.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []