Mechanism underlying the reversal of contractility dysfunction in experimental colitis by cyclooxygenase-2 inhibition.

2006 
Inflammatory bowel diseases are associated with reduced colonic contractility and induction of cyclooxygenase-2. In this study a possible role of cyclooxygenase-2 in and the underlying mechanism of the reduced contractility were investigated in experimental colitis. The effects of meloxicam, a cyclooxygenase-2 selective inhibitor were examined on colonic contractility and MAP kinase p38 and ERK1/2 expression. Colitis was induced in Sprague-Dawley male rats by intra-colonic instillation of trinitrobenzenesulphonic acid (TNBS; 40 mg/rat in 50 ethanol). The animals were divided into three groups. Group 1 (n=9) received meloxicam (3 mg/kg-day) gavage 1 h before and 1 day (Group 2) after induction of colitis. Group 3 (n=9) received phosphate buffered saline (PBS) in a similar manner and served as colitic control. The non colitic control animals received meloxicam in a similar manner. The animals were sacrificed after 5 days of treatment, colon was cleaned with PBS and colonic smooth muscle was obtained which was used in this study. Meloxicam treatment given 1 h before or 1 day after administration of colitis restored the reduced colonic contractility without affecting the sensitivity to carbachol. The levels of colonic smooth muscle IL-1β mRNA, PGE2, ERK1/2, p38, malondialdehyde, myeloperoxidase activity and colonic mass were increased, whereas the body weight was decreased due to TNBS. The changes except colonic muscle mass and p38 expression were reversed by meloxicam treatment. These findings indicate that restoration of reduced colonic contractility by meloxicam is mediated by ERK1/2, and that ERK1/2 may serve as an important anti inflammatory target for treatment of colitis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    11
    Citations
    NaN
    KQI
    []