Interplay of Matrix Stiffness and Cell–Cell Contact in Regulating Differentiation of Stem Cells

2016 
Stem cells are capable of sensing and responding to the mechanical properties of extracellular matrixes (ECMs). It is well-known that, while osteogenesis is promoted on the stiff matrixes, adipogenesis is enhanced on the soft ones. Herein, we report an “abnormal” tendency of matrix-stiffness-directed stem cell differentiation. Well-defined nanoarrays of cell-adhesive arginine-glycine-aspartate (RGD) peptides were modified onto the surfaces of persistently nonfouling poly(ethylene glycol) (PEG) hydrogels to achieve controlled specific cell adhesion and simultaneously eliminate nonspecific protein adsorption. Mesenchymal stem cells were cultivated on the RGD-nanopatterned PEG hydrogels with the same RGD nanospacing but different hydrogel stiffnesses and incubated in the induction medium to examine the effect of matrix stiffness on osteogenic and adipogenic differentiation extents. When stem cells were kept at a low density during the induction period, the differentiation tendency was consistent with the pre...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    78
    Citations
    NaN
    KQI
    []