MITNS: Multiple-Ion Transport Numerical Solver for magnetized plasmas

2020 
Abstract MITNS (Multiple-Ion Transport Numerical Solver) is a new numerical tool designed to perform 1D simulations of classical cross-field transport in magnetized plasmas. Its detailed treatment of multi-species effects makes it a unique tool in the field. We describe the physical model it simulates, as well as its numerical implementation and performance. Program summary Program Title: MITNS (Multiple-Ion Transport Numerical Solver) CPC Library link to program files: http://dx.doi.org/10.17632/9n8fjzxsyn.1 Licensing provisions: MIT Programming language: C++, with Python wrapper Nature of problem: Classical transport of multiple-species plasma across a magnetic field. This includes the collisional transport of particles, momentum, and heat. These quantities are tracked separately for each particle species. Both ion-ion and ion-electron interactions are included, as is the evolution of the magnetic field. Solution method: The system of PDEs is decomposed into a large system of coupled ODEs. The code uses finite-volume discretization for space. Time integration is done using any of three timestepping methods, including Adams-Moulton and Backwards Differentiation Formula schemes from the CVODE package [1, 2]. References: [1] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, ACM Trans. Math. Softw. 31, 363 (2005). [2] S. D. Cohen, A. C. Hindmarsh, and P. F. Dubois, Comput. Phys. 10, 138 (1996).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []