Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging

2017 
Rare-earth-based upconversion nanotechnology has recently shown great promise for photodynamic therapy (PDT). However, the NIR-induced PDT is greatly restricted by overheating issues on normal bodies and low yields of reactive oxygen species (ROS, 1O2). Here, IR-808-sensitized upconversion nanoparticles (NaGdF4:Yb,Er@NaGdF4:Nd,Yb) were combined with mesoporous silica, which has Ce6 (red-light-excited photosensitizer) and MC540 (green-light-excited photosensitizer) loaded inside through covalent bond and electrostatic interaction, respectively. When irradiated by tissue-penetrable 808 nm light, the IR-808 greatly absorb 808 nm photons and then emit a broadband peak which overlaps perfectly with the absorption of Nd3+ and Yb3+. Thereafter, the Nd3+/Yb3+ incorporated shell synergistically captures the emitted NIR photons to illuminate NaGdF4:Yb,Er zone and then radiate ultrabright green and red emissions. The visible emissions simultaneously activate the dual-photosensitizer to produce a large amount of ROS ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    242
    Citations
    NaN
    KQI
    []