Characterization of the rod-pinch diode x-ray source on Cygnus

2009 
The rod-pinch diode[1] is a self-magnetically insulated electron beam diode that is capable of producing a very bright source of hard x-rays. As fielded on the Cygnus accelerator[2], the diode operates at an impedance of 50 Ohms and produces short pulse ( ∼50 ns) bremsstrahlung radiation with a 2 MeV photon endpoint energy and dose of 4 rad measured at one meter, with an x-ray spot size ∼ 1mm. The source can be used to image through ∼ 40 g/cm 2 of material with spatial resolution of order 300 µm. Recently, a series of experiments on Cygnus have been conducted to better characterize the diode's operation and x-ray output. In particular, the x-ray spectral content, source spot-size, and shot-to-shot reproducibility have been diagnosed. The intent of these experiments is to enable improvements that may extend the diode's radiographic utility. An array of diagnostics have been utilized which include, end-on and side view x-ray pin hole imaging, time resolved and time integrated spot size measurements, step wedges, x-ray p-i-n diodes, and diode/MITL current measurements. High fidelity, PIC/Monte-Carlo simulations have also been conducted to help analyze the data. An overview of these experiments, simulations, and the conclusions from analysis is presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    9
    Citations
    NaN
    KQI
    []