Preferential protein depolymerization as a preservation mechanism for vascular litter decomposing in Sphagnum peat

2019 
Abstract. Nitrogen (N) dynamics in Phragmites australis litter due to anaerobic decomposition in three anoxic wetland substrates were analyzed by elemental analyses and infrared spectroscopy (FTIR). After 75 days of decomposition, a relative accumulation of bulk N was detected in most litters, but N accumulated less when decomposition took place in a more N-poor environment. FTIR was used to quantify the relative content of proteins in litter tissue and revealed a highly linear relationship between bulk N content and protein content. Changes in bulk N content thus paralleled and probably were governed by changes in litter protein content. Such changes are the result of two competing processes within decomposing litter: enzymatic protein depolymerization as a part of the litter breakdown process and microbial protein synthesis as a part of microbial biomass growth within the litter. Assuming microbial homeostasis, DNA signals in FTIR spectra were used to calculate the amount of microbial N in decomposed litter which ranged from 14 to 42 % of the total litter N for all leaf samples. Microbial carbon (C) content and resultant calculated carbon-use efficiencies (CUEs) indicate that microbial N in litter accumulated according to predictions of the stoichiometric decomposition theory. Subtracting microbial C- and N-contributions from litter, however, revealed decomposition site dependent variations in the percentual amount of remaining, still unprocessed plant N compared to remaining plant C, an indicator for preferential protein depolymerization. For all leaf litters, the coefficient of preferential protein depolymerization (α), which relates N-compound depolymerization to C-compound depolymerization, ranged from 0.74–0.88 in a nutrient-rich detritus mud to 1.38–1.82 in Sphagnum peat, the most nutrient-poor substrate in this experiment. Preferential protein depolymerization leads to a gradual N depletion of decomposing litter which we propose as a preservation mechanism for vascular litter decomposing in Sphagnum peat.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []