Effects of Low-Intensity Pulsed Ultrasound on Integrin-FAK-PI3K/Akt Mechanochemical Transduction in Rabbit Osteoarthritis Chondrocytes

2014 
Abstract The effect of low-intensity pulsed ultrasound (LIPUS) on extracellular matrix (ECM) production via modulation of the integrin/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been investigated in previous studies in normal chondrocytes, but not in osteoarthritis (OA). Therefore, we investigated the LIPUS-induced integrin β1/FAK/PI3K/Akt mechanochemical transduction pathway in a single study in rabbit OA chondrocytes. Normal and OA chondrocytes were exposed to LIPUS, and mRNA and protein expression of cartilage, metalloproteinases and integrin-FAK-PI3K/Akt signal pathway-related genes was determined by quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Compared with levels in normal chondrocytes, expression levels of ECM-related genes were significantly lower in OA chondrocytes and those of metalloproteinase-related genes were significantly higher. In addition, integrin β1 gene expression and the phosphorylation of FAK, PI3K and Akt were significantly higher in OA chondrocytes. The expression of all tested genes was significantly increased except for that of metalloproteinase, which was significantly decreased in the LIPUS-treated OA group compared to the untreated OA group. LIPUS may affect the integrin-FAK-PI3K/Akt mechanochemical transduction pathway and alter ECM production by OA chondrocytes. Our findings will aid the future development of a treatment or even cure for OA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    35
    Citations
    NaN
    KQI
    []