POM-assisted coating of MOF-derived Mo-doped Co3O4 nanoparticles on carbon nanotubes for upgrading oxygen evolution reaction

2020 
Abstract Endowing noble-metal-free electrocatalysts with superior oxygen evolution reaction (OER) activity is essential in water electrolysis for massive and cost-effective production of hydrogen fuels. Here, we presented Mo-doped Co3O4 nanoparticles-coated carbon nanotubes (Mo-Co3O4/CNTs), which were fabricated through pyrolysis of CNTs-stringed ZIF-67 with the doping of phosphomolybdic acid. The as-prepared Mo-Co3O4/CNTs exhibits high OER activity and strong durability with the onset potential of 1.42 V and almost constant low overpotential of 280 mV at 10 mA cm-2, which outcompete the benchmark IrO2 electrocatalyst. The outstanding OER performance is mainly attributed that Mo doping modulates the electronic properties and structures of Co3O4, which bring out high proportion of Co2+ active sites, large specific surface area, more electrophilic Co ions and favorable interfacial charge transfer. This work highlights the modification effects of high-valence metal ions on the structures of the electrocatalysts for improving OER performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    12
    Citations
    NaN
    KQI
    []