Hot Deformation Behavior and Microstructural Evolution of Antibacterial Austenitic Stainless Steel Containing 3.60% Cu

2018 
Hot deformation behavior of as-cast antibacterial austenitic stainless steel containing 3.60% copper was investigated in a temperature range of 900-1150 °C and strain rate range of 0.01-20 s−1. At strain rates higher than 1 s −1, the flow stress curves were corrected considering adiabatic heating. Kinetic analysis indicated that the hot deformation activation energy of steel was 376.02 kJ mol−1. The microstructural evolution under different temperatures was observed by optical microscopy. The nucleation sites for recrystallization and different orientations and twin ratios under different strain rates were analyzed by electron backscatter diffraction. The results showed that hot deformation was dominated by continuous dynamic recrystallization in the high-temperature and high-strain-rate region (1050-1150 °C, 1-20 s−1). On increasing the temperature and strain rate, the degree of recrystallization and twinning increased simultaneously. These phenomena promoted one another. Thus, the volume fraction of the recrystallized and twinned grains increased with the addition of Cu.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    7
    Citations
    NaN
    KQI
    []