Preoperative Prediction of G1 and G2/3 Grades in Patients With Nonfunctional Pancreatic Neuroendocrine Tumors Using Multimodality Imaging.

2021 
Objectives We aimed to develop and validate a multimodality radiomics model for the preoperative prediction of nonfunctional pancreatic neuroendocrine tumor (NF-pNET) grade (G). Methods This retrospective study assessed 123 patients with surgically resected, pathologically confirmed NF-pNETs who underwent multidetector computed tomography and MRI scans between December 2012 and May 2020. Radiomic features were extracted from multidetector computed tomography and MRI. Wilcoxon rank-sum test and Max-Relevance and Min-Redundancy tests were used to select the features. The linear discriminative analysis (LDA) was used to construct the four models including a clinical model, MRI radiomics model, computed tomography radiomics model, and mixed radiomics model. The performance of the models was assessed using a training cohort (82 patients) and a validation cohort (41 patients), and decision curve analysis was applied for clinical use. Results We successfully constructed 4 models to predict the tumor grade of NF- pNETs. Model 4 combined 6 features of T2-weighted imaging radiomics features and 1 arterial-phase computed tomography radiomics feature, and showed better discrimination in the training cohort (AUC = 0.92) and validation cohort (AUC = 0.85) relative to the other models. In the decision curves, if the threshold probability was 0.07–0.87, the use of the radiomics score to distinguish NF-pNET G1 and G2/3 offered more benefit than did the use of a “treat all patients” or a “treat none” scheme in the training cohort of the MRI radiomics model. Conclusion The LDA classifier combining multimodality images may be a valuable noninvasive tool for distinguishing NF-pNET grades and avoid unnecessary surgery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []