The predictive power of artificial intelligence on mediastinal lymphnode metastasis.

2021 
OBJECTIVE The aim of this study was to create the preoperative predictive model on mediastinal lymph-node metastasis based on artificial intelligence in surgically resected lung adenocarcinoma. METHODS We enrolled 301 surgical resections of patients with clinical stage N0-1 lung adenocarcinoma, who received positron emission tomography preoperatively between 2015 and 2019. We randomly assigned the patients into two groups: the training (n = 201) and validation groups (n = 100). The training group was used to obtain basic data for learning by artificial intelligence, whereas the validation group was used to verify the constructed algorithm. We used an automatic machine learning platform, to create artificial intelligence model. For comparison, multivariate analysis was performed in the training group, whereas for calculating and verifying the prediction accuracy rate, significant predicting factors were applied to the validation group. RESULTS Of the 301 patients, 41 patients were diagnosed as mediastinal lymph node metastasis. In multivariate analysis, the maximum standardized uptake value was an individual predictive factor. The accuracy rate of artificial intelligence model was 84%, and the specificity was 98% which were higher than those of the maximum standardized uptake value (61% and 57%). However, in terms of sensitivity, artificial intelligence model remarked low at 12%. CONCLUSIONS An artificial intelligence-based diagnostic algorithm showed remarkable specificity compared with the maximum standardized uptake value. Although this model is not ready to practical use and the result was preliminary because of poor sensitivity, artificial intelligence could be able to complement the shortcomings of existing diagnostic modalities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []