Early-time dynamics of Bose gases quenched into the strongly interacting regime

2019 
We study the early-time dynamics of a degenerate Bose gas after a sudden quench of the interaction strength, starting from a weakly interacting gas. By making use of a time-dependent generalization of the Nozi\`eres-Saint-James variational formalism, we describe the crossover of the early-time dynamics from shallow to deep interaction quenches. We analyze the coherent oscillations that characterize both the density of excited states and the Tan's contact as a function of the final scattering length. For shallow quenches, the oscillatory behaviour is negligible and the dynamics is universally governed by the healing length and the mean-field interaction energy. By increasing the final scattering length to intermediate values, we reveal a universal regime where the period of the coherent atom-molecule oscillations is set by the molecule binding energy. For the largest scattering lengths we can numerically simulate in the unitary regime, we find a universal scaling behaviour of the typical growth time of the momentum distribution in agreement with recent experimental observations [C. Eigen et al., Nature 563, 221 (2018)].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    8
    Citations
    NaN
    KQI
    []