Nicotinic-acid derivative BGP-15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy.

2021 
BACKGROUND AND PURPOSE Small molecule BGP-15 has been reported to alleviate signs of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP-15 in a rabbit model of atherosclerotic cardiomyopathy. EXPERIMENTAL APPROACH Rabbits were maintained on standard chow (Control) or atherogenic diet (HC) for 16 weeks. BGP-15 was administered intravenously (once) or orally (for 16 weeks), to assess acute and chronic effects. Cardiac function was evaluated by echocardiography, endothelium-dependent vasorelaxation was assessed, and key molecules of the protein kinase G (PKG) axis were examined by ELISA and Western blot. Passive force generation was investigated in skinned cardiomyocytes. KEY RESULTS Both acute and chronic BGP-15 treatment improved the diastolic performance of the diseased heart, however, vasorelaxation and serum lipid markers were unaffected. Myocardial cGMP levels were elevated in the BGP-15-treated group, along with preserved PKG activity and increased phospholamban Ser16-phosphorylation. PDE5 expression decreased in the BGP-15-treated group, and the substance inhibited PDE1 enzyme. Cardiomyocyte passive tension reduced in BGP-15-treated rabbits, the ratio of titin N2BA/N2B isoforms increased, and PKG-dependent N2B-titin phosphorylation elevated in the BGP-15-treated group. CONCLUSIONS AND IMPLICATIONS Here we report that BGP-15-treatment improves diastolic function, reduces cardiomyocyte stiffness, and restores titin compliance in a rabbit model of atherosclerotic cardiomyopathy by increasing the activity of the cGMP-PKG axis. As BGP-15 is proven to be safe, it may have clinical value in the treatment of diastolic dysfunction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []