Hierarchical ship detection and recognition with high-resolution polarimetric synthetic aperture radar imagery

2014 
Ship surveillance by remote sensing technology has become a valuable tool for protecting marine environments. In recent years, the successful launch of advanced synthetic aperture radar (SAR) sensors that have high resolution and multipolarimetric modes has enabled researchers to use SAR imagery for not only ship detection but also ship category recognition. A hierarchical ship detection and recognition scheme is proposed. The complementary information obtained from multipolarimetric modes is used to improve both the detection pre- cision and the recognition accuracy. In the ship detection stage, a three-class fuzzy c-means clustering algorithm is used to calculate the segmenting threshold for prescreening ship candi- dates. To reduce the false alarm rate (FAR), we use a two-step discrimination strategy. In the first step, we fuse the detection results from multipolarimetric channels to reduce the speckle noise, ambiguities, sidelobes, and other sources of interference. In the second step, we use a binary classifier, which is trained with prior data collected on ships and nonships, to reduce the FAR even further. In the ship category recognition stage, we concatenate texture- based descriptors extracted from multiple polarmetric channels to construct a robust ship representation for category recognition. Furthermore, we construct and release a ship category database with real SAR data. We hope that it can be used to promote investigations of SAR ship recognition in the remote sensing and related academic communities. The proposed method is validated by a comprehensive experimental comparison to the state-of-the-art methods. The validation procedure showed that the proposed method outperforms all of the competing meth- ods by about 5% and 15% in terms of ship detection and recognition, respectively. © 2014 Society
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    22
    Citations
    NaN
    KQI
    []