Uncovering the Origin of Divergence in the CsM(CrO4)2 (M = La, Pr, Nd, Sm, Eu; Am) Family through Examination of the Chemical Bonding in a Molecular Cluster and by Band Structure Analysis.

2018 
A series of f-block chromates, CsM(CrO4)2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the AmIII derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the LnIII compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO4)2, α-CsEu(CrO4)2, and α-CsAm(CrO4)2 were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the AmIII chromate than in the SmIII and EuIII compounds, and even larger in magnitude than the Am-5f spin–orbit splitting in this system....
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    12
    Citations
    NaN
    KQI
    []