A platinum nanolayer on lithium metal as an interfacial barrier to shuttle effect in Li-S batteries

2019 
Abstract In this work, we deposited a nanometric layer of platinum (40 nm thick) on a standard propylene/polypropylene Celgard separator 3501 by plasma sputtering, and studied the effect of this thin layer when in contact with a lithium metal anode in a Li-S battery. The platinum-coated Celgard slowed down the shuttle effect at low current density (C/10) compared to standard Celgard and led to an increase in capacity retention at higher current density (C/2). In addition, the polarization was reduced with a platinum separator in a Li-Li symmetric cell after 500 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    26
    Citations
    NaN
    KQI
    []