Study on the Ultimate Supporting Force of Shield Excavation Face Based on Anisotropic Strength Theory

2020 
The determination of the ultimate supporting force of the shield excavation face is an important problem to be solved in shield construction. Considering that the tunnel burial depth ratio has a significant effect on the instability mode of the excavation face, the classic “wedge-prism” limit equilibrium model is improved. Based on the rotation effect of principal stress axis, the Casagrande anisotropic strength equation is introduced into the modified limit equilibrium model of “wedge-prism”, and then the limit equilibrium solution of the ultimate supporting force of shield excavation face in anisotropic soil is deduced. Finally, the influence of each calculation parameter on the ultimate supporting force is analyzed by examples. The research results show that the results of the modified “wedge-prism” calculation model proposed in this paper are slightly larger than those of the centrifugal test. If the influence of the instability mode of excavation face and the anisotropy of soil strength on ultimate supporting force of the shield excavation face is not taken into account, the calculation result will be unsafe. The limit supporting force of shield tunnel excavation surface has a simple linear relationship with the anisotropy ratio. When the anisotropy ratio is greater than 1, the ultimate supporting force of shield excavation face decreases first and then tends to be stable with an increase in the buried depth ratio. When the anisotropy ratio is less than 1, the law is reversed. The more obvious the anisotropy of soil strength, the greater the rate of change of ultimate supporting force. The limit supporting force of the shield excavation face decreases linearly with the exertion of loosening earth pressure, linearly decreases with the increase in soil cohesion, and decreases nonlinearly with the increase in the angle of internal friction in soil. The relevant conclusions will provide theoretical guidance for controlling the reasonable chamber pressure of shield tunneling, and ensure the safety of construction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []