Conductivity-like damping in epitaxial Fe (Conference Presentation)

2019 
Magnetic damping impacts essential dynamics for spintronic device applications, but its fundamental mechanisms in various materials – including simple ferromagnetic metals – have yet to be understood. Here, we experimentally correlate damping with structural and transport properties of epitaxial thin films of Fe. At room temperature, the effective Gilbert damping parameter is independent of whether these films are coherently strained or partially relaxed. However, at low temperature, we find that coherently strained Fe films with higher crystalline quality and conductivity exhibit higher damping. The enhancement of low-temperature damping is greater than that from classical eddy current loss. Our observation of such conductivity-like damping, possibly governed by the intraband scattering mechanism [1], provides fundamental insight into the role of crystallinity in damping in ferromagnetic metals. [1] K. Gilmore, Y. U. Idzerda, M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007); M. A. W. Schoen et al. Nat. Phys. 12, 839 (2016).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []