Developmental characteristics of AMPA receptors in chick lumbar motoneurons.
2007
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2+-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca2+-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca2+-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
12
Citations
NaN
KQI