Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO 2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells

2018 
In this study, Ag nanoparticles with diverse particle size and concentration, fabricated via the polyol method, were embedded in a TiO2 compact film to improve the power conversion efficiency of perovskite solar cells. Obtained results showed that Ag nanoparticles embedded in the TiO2 compact film do not affect the crystal structure of TiO2, while the size of the Ag nanoparticles can strongly influence the light absorption capacity of perovskite materials. However, the absorption intensity and power conversion efficiency of perovskite cells decreased with the increase in size of Ag nanoparticles. The amount of Ag nanoparticles was also an important factor for the performance of perovskite solar cells, and Ag nanoparticles in the compact layer were optimized to measure 10 nm in diameter, being embedded at a molar ratio of 1.5% (Ag:Ti = 1.5 mol%). Compared with hole-conductor-free perovskite solar cells that use carbon as counter electrodes, without Ag nanoparticles incorporated in the compact film, the enhanced efficiency of cells developed in this study can be mainly ascribed to the accelerated charge transfer, decreased charge recombination, and enhanced light absorption of the perovskite material in the visible region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    15
    Citations
    NaN
    KQI
    []