Invasive oral cancer stem cells display resistance to ionising radiation

2015 
// Emilios Gemenetzidis 1 , Luke Gammon 1 , Adrian Biddle 1 , Helena Emich 1 , Ian C. Mackenzie 1 1 Blizard Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK Correspondence to: Ian C. Mackenzie, e-mail: i.c.mackenzie@qmul.ac.uk Keywords: irradiation, cancer stem cells, EMT, apoptosis, invasion Received: August 10, 2015      Accepted: October 06, 2015     Published: November 02, 2015 ABSTRACT There is a significant amount of evidence to suggest that human tumors are driven and maintained by a sub-population of cells, known as cancer stem cells (CSC). In the case of head and neck cancer, such cells have been characterised by high expression levels of CD44 cell surface glycoprotein, while we have previously shown the presence of two diverse oral CSC populations in vitro , with different capacities for cell migration and proliferation. Here, we examined the response of oral CSC populations to ionising radiation (IR), a front-line measure for the treatment of head and neck tumors. We show that oral CSC initially display resistance to IR-induced growth arrest as well as relative apoptotic resistance. We propose that this is a result of preferential activation of the DNA damagerepair pathway in oral CSC with increased activation of ATM and BRCA1, elevated levels of DNA repair proteins RAD52, XLF, and a significantly faster rate of DNA double-strand-breaks clearance 24 hours following IR. By visually identifying CSC sub-populations undergoing EMT, we show that EMT-CSC represent the majority of invasive cells, and are more radio-resistant than any other population in re-constructed 3D tissues. We provide evidence that IR is not sufficient to eliminate CSC in vitro , and that sensitization of CD44 hi /ESA low cells to IR, followed by secondary EMT blockade, could be critical in order to reduce primary tumor recurrence, but more importantly to be able to eradicate cells capable of invasion and distant metastasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    27
    Citations
    NaN
    KQI
    []