Potential of d-Octaarginine-Linked Polymers as an in Vitro Transfection Tool for Biomolecules

2015 
We have been investigating the potential use of cell-penetrating peptide-linked polymers as a novel penetration enhancer. Since previous in vivo studies demonstrated that poly(N-vinylacetamide-co-acrylic acid) bearing d-octaarginine, a typical cell-penetrating peptide, enhanced membrane permeation of biomolecules, its potential as an in vitro transfection tool was evaluated in this study. A plasmid DNA encoding green fluorescent protein (pGFP-C1), β-galactosidase, and bovine serum albumin (BSA) were used as model biomolecules. Anionic pGFP-C1 interacted electrostatically with cationic d-octaarginine-linked polymers. When the ratio of mass concentration of polymers to that of pGFP-C1 reached 2.5, complexes whose size and zeta potential were approximately 200 nm and 15 mV, respectively, were obtained. GFP expression was observed in cells incubated with complexes prepared under conditions in which the polymer/pDNA concentration ratio exceeded 2.5. The expression level elevated with an increase in the concent...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []