THE SCIENCE OF CONFINEMENT AND THE GLUEX/HALL D PROJECT AT JEFFERSON LAB

2003 
One of the outstanding and fundamental questions in physics is the quantitative understanding of the confinement of quarks and gluons in quantum chromodynamics (QCD). Confinement is a unique feature of QCD. Exotic hybrid mesons manifest gluonic degrees of freedom and their spectroscopy will provide the crucial data needed to test assumptions in lattice QCD and phenomenology leading to confinement. Photo-production is expected to be particularly effective in producing exotic hybrids but data using photon probes are sparse. At Jefferson Lab, plans are underway to use the coherent bremsstrahlung technique to produce a linearly polarized photon beam. A solenoid-based hermetic detector will be used to collected data on meson production and decays with statistics that will exceed the current photoproduction data in hand by several orders of magnitude after the first year of running. In order to reach the ideal photon energy of 9 GeV/c for this mapping of the exotic spectra, the energy of the Jefferson Lab electron accelerator, CEBAF, will be doubled from its current maximum of 6 GeV to 12 GeV. The physics and project are described.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []