Long-range Recombination Gradient between HIV-1 Subtypes B and C Variants Caused by Sequence Differences in the Dimerization Initiation Signal Region

2008 
Abstract HIV-1 intersubtype recombinants have an increasingly important role in shaping the AIDS pandemic. We sought to understand the molecular mechanisms that generate intersubtype HIV-1 recombinants. We analyzed recombinants of HIV-1 subtypes B and C, and identified their crossover junctions in the viral genome from the 5′ long terminal repeat (LTR) to the end of pol . We identified 56 recombination events in 56 proviruses; the distribution of these events indicated an apparent recombination gradient: there were significantly more crossover junctions in the 3′ half than in the 5′ half of the region analyzed. HIV-1 subtypes B and C have different dimerization initiation signal (DIS). We hypothesized that the inability of subtype B and C RNAs to form perfect base-pairing of the DIS affects the dimeric RNA structure and causes a decrease in recombination events at the 5′ end of the viral genome. To test this hypothesis, we examined recombinants generated from a subtype C virus and a modified subtype B virus containing a subtype C DIS. In the 56 proviruses analyzed, we identified 96 recombination events, which are significantly more frequent than in the B/C recombinants. Furthermore, these crossover junctions were distributed evenly throughout the region analyzed, indicating that the recombination gradient was corrected by matching the DIS. Therefore, base-pairing at the DIS has an important function during HIV-1 reverse transcription, most likely in maintaining nucleic-acid structure in the complex. These findings reveal elements important to retroviral recombination and provide insights into the generation of HIV-1 intersubtype recombinants that are important to the AIDS epidemic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    20
    Citations
    NaN
    KQI
    []