Correlation of Computed Tomography Test Bolus Dynamics and Conventional Computed Tomography Parameters With Pulmonary Vascular Resistance in Patients With Pulmonary Arterial Hypertension

2021 
OBJECTIVE Pulmonary vascular resistance (PVR) is a measurement obtained with invasive right heart catheterization (RHC) that is commonly used for management of patients with pulmonary arterial hypertension (PAH). Computed tomography pulmonary angiography (CTPA) is also done as part of the workup for PAH in some cases. The aim of our study was to assess the correlation of contrast dynamic changes in the main pulmonary artery (MPA) on CTPA with PVR obtained with RHC. METHODS This is an IRB-approved retrospective study performed in two separate institutions (Medical College of Wisconsin and University of Alabama) between January 2010 and December 2013. During CTPA done as test bolus, serial images are acquired at the level of MPA after intravenous injection of contrast to determine timing of the CT acquisition. Since the PVR changes with the degree of PAH, we hypothesize that will be reflected in the contrast kinetics in MPA. A correlation of standard CT metrics (MPA diameter, right pulmonary artery [PA] diameter, left PA diameter, MPA/aorta ratio, and right ventricle/left ventricle [RV/LV] ratio) and dynamic (full width at half maximum) CTPA parameters in patients with known PAH was performed with PVR obtained from RHC done within 30 days. Statistical analysis was performed by Pearson correlation coefficient. RESULTS Among 221 patients in our database, 37 patients fulfilled the selection criteria. There was a strong correlation between full width half maximum (FWHM) and mean pulmonary artery pressure (mPAP) (r=0.69, p value<0.00001), PVR (r=0.8, p value<0.00001) and indexed PVR (PVRI) (r=0.75, p value<0.00001). CONCLUSION FWHM obtained from CTPA strongly correlates with RHC parameters and is potentially more helpful than static measurements for follow-up of patients with known PAH to assess response to treatment or progression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []