Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries

2015 
Amorphous and crystalline hybrid structure Co2SnO4/C composites have been prepared by a facile way using coprecipitation process and high-energy ball milling technology. Electrochemical performance tests show that the composite anodes could maintain reversible capacity of higher than 550 mAh g−1 up to 100 cycles, much better than that of pure Co2SnO4 (194.1 mAh g−1). These materials also present better rate performance with fairly stable capacity retention when the current ranges from 100 to 500 mA g−1. Impedance measurements confirm that these composites are more beneficial for lithium diffusion compared to pure Co2SnO4. The graphite carbon not only buffers the volume expansion-related cracking but also provides excellent conductivity for this material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    6
    Citations
    NaN
    KQI
    []