Momentum and Density Dependence of the Nuclear Mean Field Using Finite Range Simple Effective Interaction: A Tool for Heavy-Ion Collision Dynamics

2021 
The finite range Simple Effective Interaction (SEI) has been constructed with minimum number of parameters that can simulate the correct trend of momentum dependence of nuclear mean field, as ascertained from the heavy-ion collision experiments at intermediate energy range. Nine parameter combinations of the total eleven interaction parameters required for the complete study of symmetric and isospin asymmetric nuclear matter have been carefully determined, which gives momentum dependence of the nucleonic mean field and equation of state similar in trend to the predictions of microscopic calculations. In the determination of the parameters, one needs to assume the standard values of only three nuclear matter saturation properties, namely, the density, energy per particle, and symmetry energy at saturation in normal nuclear matter. The present formulation has the advantage of varying the density dependence of nuclear symmetry energy where the momentum dependence of the nuclear mean field remains unchanged, and the vice-versa. This can provide quality inputs to the transport model equations solved in the analysis of data of heavy-ion collision experiments in the intermediate energy range. The SEI has also the ability of predicting the finite nucleus properties similar in quality as that of any of the existing effective interaction in the field.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []