Intervention with a combined physical exercise training to reduce oxidative stress of women over 40 years of age

2019 
Abstract Exercise training has been shown to be one of the most important lifestyle factor for improving functional performance and health status. Nevertheless, and although some evidence exists about the effects of aerobic training on oxidative stress, there is scarce information concerning the effects of combined exercise training (aerobic and strength training) in oxidative stress. Considering this, the aim of this study was to verify the effects of a combined exercise training in oxidative stress parameters of women over 40 years of age. At baseline, 67 women enrolled in the study and were divided into three groups: younger group (YG, n = 28: 40 to 49 years), middle-aged group (MAG, n = 21: 50 to 59 years) and oldest group (OG, n = 18: above 60 years). These women engaged in a combined exercise training program for 16 weeks, 3 sessions of 60 min per week. At the end of the program, only 31 women (YG: 15; MAG: 8 and OG: 8) were remained in the study and were considered for analysis. Physical assessments (weight, height, body mass index and waist circumference), health and functional parameters (systolic and diastolic blood pressure, fitness tests: supine, latissimus, squat jump, 8 foot up and go test, 30 second chair stand test, and 6 min walk test) and measures of DNA damage (DNA SBs, DNA netFPG), lipid peroxidation (MDA), total antioxidant capacity (TAC) and catalase activity (CAT) were performed before and after the 16-week intervention with combined exercise. The results showed an improvement of overall physical and functional performance as well as a significant decrease in waist perimeter and systolic blood pressure after the exercise program intervention. Regarding the biochemical measures, the exercise training induced a significant decrease in oxidative damage, and a significant increase in the TAC (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    9
    Citations
    NaN
    KQI
    []