Essential histone chaperones collaborate to regulate transcription and chromatin integrity

2020 
Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. We have discovered that the physical interaction between two essential histone chaperones, Spt6 and Spn1/Iws1, is required for transcriptional accuracy and nucleosome organization. To understand this requirement, we have isolated suppressors of an spt6 mutation that disrupts the Spt6-Spn1 interaction. Several suppressors are in a third essential histone chaperone, FACT, while another suppressor is in the transcription elongation factor Spt5/DSIF. The FACT suppressors weaken FACT-nucleosome interactions and bypass the requirement for Spn1, possibly by restoring a necessary balance between Spt6 and FACT on chromatin. In contrast, the Spt5 suppressor modulates Spt6 function in a Spn1-dependent manner. Despite these distinct mechanisms, both suppressors alleviate the nucleosome organization defects caused by disruption of the Spt6-Spn1 interaction. Taken together, we have uncovered a network in which histone chaperones and other elongation factors coordinate transcriptional integrity and chromatin structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    0
    Citations
    NaN
    KQI
    []