NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation

2020 
Abstract Ischemic stroke leads to neuronal cell death and induces a cascade of inflammatory signals that results in secondary brain damage. Although constant efforts to develop therapeutic strategies and to reveal the molecular mechanism resulting in the physiopathology of this disease, much still remains unclear. Membrane-bound Toll-like receptors (TLRs) and cytosolic nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) are two major families of pattern recognition receptors that initiate pro-inflammatory signaling pathways. In the present study, we explored the role of NLRP10 in regulating inflammatory responses in acute ischemic stroke using the wild type (WT) and NLRP10 knockout (KO) mice by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries. The study first showed that NLRP10 was over-expressed in the ischemic penumbra of WT mice. Then, the brain infarct volume was significantly decreased, and the moving activity was improved post-MCAO in mice with NLRP10 knockout. Apoptosis was also alleviated by NLRP10-knockout, as evidenced by the decreased number of TUNEL-staining cells. Further, NLRP10 deficiency attenuated the activation of glia cells in hippocampus of mice with MCAO operation. NLRP10 inhibition ameliorated the levels of inflammatory factors in peripheral blood serum and hippocampus of mice after stroke. The activation of toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) signaling pathways was markedly suppressed by NLRP10 ablation in mice after MCAO treatment. Importantly, inflammasome, including NLRP12, ASC and Caspase-1, induced by MCAO in hippocampus of mice was clearly impeded by the loss of NLRP10. The results above were mainly verified in LPS-incubated astrocytes in the absence of NLRP10. Correspondingly, in LPS-treated astrocytes, NLRP10 knockout-reduced inflammation via impairing TLR-4/NF-κB and NLRP12/ASC/Caspase-1 pathways was evidently restored by over-expressing NLRP10. Therefore, the results above indicated an essential role of NLRP10 in regulating ischemic stroke, presenting NLRP10 as a promising target to protect human against stroke.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    7
    Citations
    NaN
    KQI
    []