Biodegradable L-Lysine-Modified Amino Black Phosphorus/Poly(l-lactide-coε-caprolactone) Nanofibers with Enhancements in Hydrophilicity, Shape Recovery and Osteodifferentiation Properties

2021 
Abstract: Biodegradable poly-(lactide-coe-caprolactone) (PLCL) scaffolds have opened new perspectives for tissue engineering due to their nontoxic and fascinating functionality. Herein, a black phosphorus-based biodegradable material with a combination of promising enhanced hydrophilicity, shape recovery and osteodifferentiation properties was proposed. First, amino black phosphorous (BP-NH2) was prepared by a simple ball milling method. Then, L-lysine-modified black phosphorous (L-NH-BP) was formed by hydrogen bonding between L-lysine and amino BP and integrated into PLCL to form PLCL/L-NH-BP composite fibers. The scaffolds had excellent shape recovery and shape fixity properties. Moreover, based on gene expression and protein level assessment, the scaffolds could enhance the expression of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), simultaneously improving the mineralization ability of bone mesenchymal stem cells. Specifically, this new composite material was experimentally verified to be degradable under mild conditions. This strategy provided new insight into the design of multifunctional materials for diverse applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []