Lack of association between UCP2 gene polymorphisms and obesity phenotype in Italian Caucasians

2003 
The importance of the genetic component on adipose tissue accumulation has been clearly demonstrated. Among the candidate genes investigated, there are those that regulate thermogenesis and, thus, can affect energy expenditure. The uncoupling proteins (UCPs) are a family of proteins that uncouple respiration leading to generation of heat and increased energy expenditure. Contradictory data indicate that allelic variants in their coding genes might be associated with obesity. In this study we evaluated the role of two allelic variants of the UCP2 gene in obesity and the association with its sub-phenotypic characteristics. To this aim, 360 morbidly obese patients [age: 45±15 yr, body mass index (BMI): 46±7 kg/m2] and 103 normal weight subjects (BMI <24 kg/m2) were genotyped for the 45 bais-pair (bp) insertion/deletion (I/D) in the 3′-un-traslated region of exon 8 of the UCP2 gene while the presence of an Ala/Val substitution at codon 55 (Ala55Val) of the same gene was studied in 104 obese and 50 lean subjects. Patients also underwent a study protocol including measurements of BMI, waist-to-hip ratio (WHR), resting energy expenditure (REE), energy intake, fat mass (FM) and free fat mass (FFM), total cholesterol (TCH), high density lipoprotein (HDL) cholesterol, triacylglyceroles (TG), leptin levels, basal glucose, im-munoreactive insulin (IRI), glycated haemoglobin (HbA1c), insulin sensitivity and thyroid hormones. No significant association between the two polymorphisms studied and the clinical, metabolic and anthropometric parameters characteristic of the obese phenotype was found. These results, in accordance with similar findings previously obtained in other ethnic groups, suggest that these two UCP2 allelic variants may not have a direct role in the pathogenesis and development of obesity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    19
    Citations
    NaN
    KQI
    []