Piracy-controlled geometry of tide-dominated point bars: Combined evidence from ancient sedimentary successions and modern channel networks

2020 
Abstract Establishing critical comparisons between fluvial- and tidal-channel morphodynamics is a major goal in the study of coastal landscapes. Freely migrating meandering rivers are known to produce laterally extensive, sand-prone point-bar bodies which commonly exhibit width:thickness ratios up to 250. Meandering channels are widespread in tidal channel networks draining intertidal plains, where they exhibit planform dynamics similar to their fluvial analogues. However, tidal networks are characterized by a high channel density that likely hinders tidal meanders from migrating laterally for long distances without interacting with other channels. In order to better understand how the interaction between adjacent meandering channels controls the development of tide-dominated point bars, two point-bar bodies from the Eocene Castigaleu Formation (Spain) are investigated and compared with the geometry of a modern tidal point bar of the northern Venice Lagoon (Italy). The Eocene bars are characterized by a low width:thickness ratio (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    125
    References
    2
    Citations
    NaN
    KQI
    []