Assessment of a Large Subsurface Controlled Drainage and Irrigation System: III. Water chemistry of the tile effluent and its potential impact on surface water resources

2010 
Abstract Controlled subsurface drainage irrigation systems promote crop productivity; however, these land management systems also allow an efficient pathway for the transport of elements from soils to surface water resources. The nitrate and macro-element effluent concentrations from tile-drainage involving a 40 ha controlled subsurface drainage irrigation system are described and compared to soil nitrate availability. Soil nitrate concentrations generally show an increase immediately after soil nitrogen fertilization practices and are sufficiently abundant to promote their transport from the soil resource to the tile-drain effluent waters. The data indicates that: (1) the transport of nitrate-N in tile-drain effluent waters is appreciable; (2) denitrification pathways effectively reduce a portion of the soil nitrate-N when the controlled drainage system establishes winter-early spring anoxic soil conditions, and (3) the best strategy for reducing nitrate-N concentrations in tile-drain effluent waters is ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []