Differentiating Sulfopeptide and Phosphopeptide Ions via Resonant Infrared Photodissociation

2014 
The post-translational modifications sulfation and phosphorylation pose special challenges to mass spectral analysis due to their isobaric nature and their lability in the gas phase, as both types of peptides dissociate through similar channels upon collisional activation. Here, we present resonant infrared photodissociation based on diagnostic sulfate and phosphate OH stretches, as a means to differentiate sulfated from phosphorylated peptides within the framework of a mass spectrometry platform. The approach is demonstrated for a number of tyrosine-containing peptides, ranging from dipeptides (YG, pYG, and sYG) over tripeptides (GYR, GpYR, and GsYR), to more biologically relevant enkephalin peptides (YGGFL, pYGGFL, and sYGGFL). In all cases, the diagnostic ranges for sulfate OH stretches are established as 3580–3600 cm–1 and can thus be distinguished from other characteristic hydrogen stretches, such as carboxylic acid OH, alcohol OH, and phosphate OH stretches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    22
    Citations
    NaN
    KQI
    []