Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis

2019 
Pt-based intermetallic nanostructures have demonstrated higher electrocatalytic performances compared to random alloy structures. However, the origin of their enhanced catalytic properties remains elusive. Furthermore, a robust synthetic strategy for well-defined intermetallic nanostructures represents a challenge. Here, we reveal by combining theoretical and experimental results that the activity enhancement in intermetallic structures for oxygen reduction reaction (ORR) originates from the intensified ligand effect. We prepared well-defined model nanocatalysts via confined nanospace-directed synthesis using mesoporous silica templates, which allows precise control over the size and shape of nanostructures. Importantly, this method can transform disordered alloy nanostructures into intermetallic analogues without agglomeration, enabling decoupling of an atomic ordering effect in catalysis. The prepared ordered intermetallic Pt3Co nanowires (O-Pt3Co NWs) can benefit from the intensified ligand effect, Pt-...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    43
    Citations
    NaN
    KQI
    []