KINETICS, MICROSTRUCTURE AND STRAIN IN GaN THIN FILMS GROWN VIA PENDEO-EPITAXY

2004 
Maskless pendeo-epitaxy involves the lateral and vertical growth of cantilevered "wings" of material from the sidewalls of unmasked etched forms. Gallium Nitride films grown at 1020°C via metalorganic vapor phase epitaxy on GaN/AlN/6H-SiC(0001) substrates previously etched to form -oriented stripes exhibited similar vertical [0001] and lateral growth rates, as shown by cross-sectional scanning electron microscopy. Increasing the temperature increased the growth rate in the latter direction due to the higher thermal stability of the surface. The surface was atomically smooth under all growth conditions with a root mean square (RMS)=0.17 nm. High resolution X-ray diffraction and atomic force microscopy of the pendeo-epitaxial films confirmed transmission electron microscopy results regarding the significant reduction in dislocation density in the wings. This result is important for the properties of both optoelectronic and microelectronic devices fabricated in III-Nitride structures. Measurement of strain indicated that the wing material is crystallographically relaxed as evidenced by the increase in the c-axis lattice parameter and the upward shift of the E2 Raman line frequency. A strong D°X peak at 3.466 eV was also measured in the wing material. However, tilting of the wings of ≤0.15° occurred due to the tensile stresses in the stripes induced by the mismatch in the coefficients of thermal expansion between the GaN and the underlying substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []