Non-Fluorinated, Sustainable, and Durable Superhydrophobic Microarrayed Surface for Water-Harvesting

2020 
Water scarcity is a worldwide issue that significantly affects the environment, population, and economy of the arid zones. In this study, we report a straightforward method for water-harvesting based on modifications of the surface wettability. Using magnesium chloride, lauric acid, and electrodeposition process, a superhydrophobic surface (155°) is obtained. Morphological characterization techniques allow determination of the characteristic flower-like microstructures combined with close packed nanoarrays that lead to the hierarchical structure. Furthermore, the coating presents vertically aligned microarrays in a non-linear cone morphology formed by dynamic templating of hydrogen bubbles. From a chemical point of view, magnesium laurate is responsible for the surface tension decrease. To determine the durability of the obtained surface ultra-violet (UV) light test and abrasive paper test, tests are carried out revealing high durability against these severe conditions. The water-harvesting ability of the superhydrophobic surface is studied at 45° and 90° tilted samples. The capacity of the water to be harvested efficiently is found to be at 90° tilt under fog conditions. The use of green reactants associated with this hierarchical structure broadens a new scope for sustainable freshwater collection and it becomes an excellent example of a green solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    3
    Citations
    NaN
    KQI
    []