Feasibility of fast cardiovascular magnetic resonance strain imaging in patients presenting with acute chest pain.

2021 
Background Cardiovascular magnetic resonance (CMR) is the current reference standard for the quantitative assessment of ventricular function. Fast Strain-ENCoded (fSENC)-CMR imaging allows for the assessment of myocardial deformation within a single heartbeat. The aim of this pilot study was to identify obstructive coronary artery disease (oCAD) with fSENC-CMR in patients presenting with new onset of chest pain. Methods and results In 108 patients presenting with acute chest pain, we performed fSENC-CMR after initial clinical assessment in the emergency department. The final clinical diagnosis, for which cardiology-trained physicians used clinical information, serial high-sensitive Troponin T (hscTnT) values and—if necessary—further diagnostic tests, served as the standard of truth. oCAD was defined as flow-limiting CAD as confirmed by coronary angiography with typical angina or hscTnT dynamics. Diagnoses were divided into three groups: 0: non-cardiac, 1: oCAD, 2: cardiac, non-oCAD. The visual analysis of fSENC bull´s eye maps (blinded to final diagnosis) resulted in a sensitivity of 82% and specificity of 87%, as well as a negative predictive value of 96% for identification of oCAD. Both, global circumferential strain (GCS) and global longitudinal strain (GLS) accurately identified oCAD (area under the curve/AUC: GCS 0.867; GLS 0.874; p<0.0001 for both), outperforming ECG, hscTnT dynamics and EF. Furthermore, the fSENC analysis on a segmental basis revealed that the number of segments with impaired strain was significantly associated with the patient´s final diagnosis (p<0.05 for all comparisons). Conclusion In patients with acute chest pain, myocardial strain imaging with fSENC-CMR may serve as a fast and accurate diagnostic tool for ruling out obstructive coronary artery disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []