Experimental study on heat transfer of an engine radiator with T i O 2 /EG-water nano-coolant

2021 
Nanofluid as a transport medium displays a great potential in engineering applications involving heat transfer. In this paper, the execution of water and ethylene glycol-based TiO2 nanofluid as a radiator coolant is resolved experimentally. The convective heat transfer coefficient of TiO2/EG-Water nanocoolant has been estimated and contrasted with the information acquired experimentally. Nanocoolant were set up by taking 25% ethylene glycol and 75% water with low volume concentration of TiO2 nanoparticles. All the experiments were led for the distinctive volume flow rates in the range going from 30 to 180 L/h (LPH). The nanocoolant made to flow through curved radiator tubes in every experiment, so that it can exchange heat effectively. Result shows that increasing the volume flow rate of nanocoolant flowing in the radiator tubes, increases the heat transfer as well as the convective heat transfer coefficient of nanocooant. Maximum heat transfer enhancement of 29.5% was recorded for nanocoolant with 0.03% nanoparticle concentration as compared to water at 150 LPH. Apart from this nanoparticle concentration into the base fluid, no further enhancement in heat transfer has been observed at any volume flow rate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []