Confirmation and physical characterization of the new bulge globular cluster Patchick 99 from the VVV and Gaia surveys.

2021 
Globular clusters (GCs) are important tools to understand the formation and evolution of the Milky Way (MW). The known MW sample is still incomplete, so the discovery of new GC candidates and the confirmation of their nature are crucial for the census of the MW GC system. Our goal is to confirm the physical nature of two GC candidates: Patchick99 and TBJ3, located towards the Galactic bulge. We use public data in the near-IR from the VVV, VVVX and 2MASS along the with deep optical data from the Gaia DR2, in order to estimate their main physical parameters: reddening, extinction, distance, luminosity, mean cluster proper motions (PMs), size, metallicity and age. We investigate both candidates at different wavelengths. We use near-IR and optical CMDs in order to analyse Patchick99. We decontaminate CMDs following a statistical procedure and PM-selection. Reddening and extinction are derived by adopting reddening maps. Metallicity and age are evaluated by fitting stellar isochrones. Reddening and extinction are E(J-Ks)=0.12+/-0.02 mag, AKs=0.09+/-0.01 mag from the VVV data, whereas E(BP-RP)=0.21+/-0.03 mag, AG=0.68+/-0.08 mag from Gaia DR2. We estimate a distance d=6.4+/-0.2 kpc in near-IR and D=7.0+/-0.2 kpc in optical. We derive its metallicity and age fitting PARSEC isochrones, finding [Fe/H]=-0.2+/-0.2 dex and t=10+/-2 Gyr. The mean PMs for Patchick99 are pmRA=-298+/-1.74 mas/yr and pmDEC=-5.49+/-2.02 mas/yr. We confirm that it is a low-luminosity GC, with MKs=-7.0+/-0.6 mag. The radius estimation is performed building the radial density profile, finding r~10'. We recognise 7 RR Lyrae star members within 8.2 arcmin from its centre, confirming the distance found by other methods. We found that TBJ3 shows mid-IR emissions that are not present in GCs. We discard TBJ3 as GC candidate and we focus on Patchick99. We conclude that it is an old metal-rich GC, situated in the Galactic bulge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    0
    Citations
    NaN
    KQI
    []