Nanopore long-read RNAseq reveals regulatory mechanisms of thermally variable reef environments promoting heat tolerance of scleractinian coral Pocillopora damicornis.

2021 
Abstract Some scleractinian corals exhibit high thermal adaptability to climate changes, although the mechanism of their adaptation is unclear. This study investigated the adaptability of scleractinian coral Pocillopora damicornis to thermally variable reef environments by applying a nanopore-based RNA sequencing method to characterize different transcription responses that promote heat tolerance of P. damicornis. We identified 1414 novel genes and optimized 6256 mis-annotated loci. Based on full-length transcriptome data, we identified complex alternative polyadenylation and alternative splicing events, which can improve our understanding of the genome annotation and gene structures of P. damicornis. Furthermore, we constructed differentially expressed lncRNA-mRNA co-expression networks, which may play a crucial role in the P. damicornis thermal adaptive response. KEGG function enrichment analysis revealed that P. damicornis from the high-temperature pool had a lower metabolic rate than that from the low-temperature pool. We hypothesize that metabolic readjustment, in the form of a lower metabolic rate, positively correlated with increased heat tolerance in P. damicornis in thermally variable reef environments. Our study provides novel insights into lncRNAs that promote thermally tolerance of scleractinian corals in the thermally variable reef environment, suggesting potential mechanisms for their adaptation to global warming in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    1
    Citations
    NaN
    KQI
    []