Homogenization of braided fabric composite for reliable large deformation analysis of reinforced rubber hose

2013 
Abstract High pressure rubber hose is in the lamination structure composed of pure rubbers and braided fabric composite layers to have the sufficient strength against the excessive radial expansion and the large deformation, in which the braided fabric layer is woven with wrap and fill tows inclined to each other with the predefined helix angle in the complex periodic pattern. The consideration of detailed geometry of braided fabric layer in the numerical analysis leads to a huge number of finite elements so that the braided fabric layer has been traditionally simplified as an isotropic cylindrical one with the homogeneous isotropic material properties of braid spun tread. However, this simple model leads to the numerical prediction and design with the questionable reliability. In this context, this paper addresses the development of an in-house module, which is able to be interfaced with commercial FEM code, for the reliable large deformation analysis of the reinforced rubber hose with the element number at the level of the traditional simple model. The in-house module is able to not only automatically generate 3-D unit cell (or RVE) model of the braided fabric layer but evaluate the homogenized orthotropic material properties by automatically performing a serious of unit cell finite element analyses based on the superposition method. The validity of the in-house module and the reliability of the homogenization method are verified through the illustrative numerical experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    20
    Citations
    NaN
    KQI
    []