Optimizing Piezoelectric Stack Preload Bolts in Ultrasonic Transducers

2015 
Abstract The selection of the preload bolt is often an afterthought in the design of Langevin type “sandwich” transducers, but quite often it is the root cause of failure for power ultrasonic applications. The main role of the preload bolt is to provide a “prestress” in the piezo stack to prevent interface “gapping” or tension in glued joints which can result in delamination. But as an integral part of a highly tuned dynamic system, the resulting parasitic resonances in these preload bolts, such as bending or longitudinal modes, are often difficult to predict and control. This research investigates many aspects of preload bolt design for achieving optimal transducer performance, including basic size and strength determination based on drive amplitude, as well as ensuring adequate thread engagement to the mating horn. Other aspects such as rule-of-thumb configuration and length guidelines to reduce parasitic resonances are also investigated. Optimizing the uniformity of stress in the piezoceramics is also considered, which is affected by end mass length, counterbores and proximity to threading. The selection of the bolt material based on stiffness is also investigated as related to electromechanical coupling. The investigation focuses solely on Langevin type transducers used for semiconductor wire bonding, and which are comprised of the common Navy Types I and III (PZT4 and PZT8) piezoelectric materials. Several metrics are investigated such as impedance, displacement gain, and electromechanical coupling factor. The experimental and theoretical research methods include Bode plots, scanning laser vibrometry and finite element analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    16
    Citations
    NaN
    KQI
    []