Energy-based dynamic parameter identification for Pasternak foundation model

2021 
Parameter identification of Pasternak foundation models (PFM) is never satisfactory, which discourages the application and popularization of PFM. In the present study, an energy-based model to predict the dynamic foundation coefficients was proposed using the vibration kinetic energy and potential energy of a Pasternak foundation-rigid plate system. On the basis of the Pasternak foundation, the relationship among the natural frequency, dynamic foundation coefficients, rigid plate configuration, and vibrating soil equivalent mass per unit area was considered. To obtain the natural frequencies of the Pasternak foundation-rigid plate system, dynamic tests were performed. Using two or more dynamic test results of various rigid plates on a foundation, a set of equations of dynamic foundation coefficients was set up to directly identify the foundation coefficients and equivalent mass per unit area of vibrating soil. The feasibility of the proposed method was verified by comparing it with the outdoor and indoor test results and finite element analysis results. When the proposed method is used to obtain the dynamic parameters, PFM can be generalized and applied more widely in engineering practice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []