Classical and quantum many-body effects on the critical properties and thermodynamic regularities of silicon

2017 
Using molecular simulation, we determine the critical properties of Si as well as the loci for several remarkable thermodynamic contours spanning the supercritical region of the phase diagram. We consider a classical three-body potential as well as a quantum (tight-binding) many-body model, and determine the loci for the ideality contours, including the Zeno line and the H line of ideal enthalpy. The two strategies (classical or quantum) lead to strongly asymmetric binodals and to critical properties in good agreement with each other. The Zeno and H lines are found to remain linear over a wide temperature interval, despite the changes in electronic structure undergone by the fluid along these contours. We also show that the classical and quantum model yield markedly different results for the parameters defining the H line, the exponents for the power-laws underlying the line of minima for the isothermal enthalpy and for the density required to achieve ideal behavior, most notably for the enthalpy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    3
    Citations
    NaN
    KQI
    []